
 1

Cocoa Pie Menu Implementation
Julian Missig

Carnegie Mellon University
jmissig@cmu.edu

ABSTRACT
This paper describes an implementation of a pie menu [3]
for Mac OS X using Cocoa [4]. It discusses the issues
involved in its creation, future steps for the library before
releasing it to the public at large, and the author’s musings
on the real reasons Pie Menus are not popular.

Author Keywords
Pie menus, marking menus, Mac OS X, Cocoa
implementation

ACM Classification Keywords
H5.2. User Interfaces: Interaction styles

INTRODUCTION
Fitt’s Law tells us that the time to target an object on a
screen using a mouse or similar input device is a function of
both the size of the object and the distance to do that object.
The Macintosh operating system as well as its predecessors
have exploited this: The main menu was placed such that
the items could be selected at the absolute top edge of the
screen. This gives the menu items an essentially infinite
size in one direction, allowing for easy selection by a flick
of the mouse in the general direction of the item. Thus, the
menu item is easier to select and can be selected much
faster.

Linear menu items are almost the antithesis of an
exploitation of Fitt’s Law. All of the items are the same
size, and they are all laid out in the same direction. The
only difference selection-wise between one item and
another is the exact amount of distance traveled, which
comes down to item height (the smallest of the two
dimensions of a linear menu item).

In a pie menu, each menu item is a slice of a circle. When
the menu is brought up the cursor is at the center of the
circle. Clicking in the center dismisses the menu. With this
design, each menu item differs from the other by actual
direction. Distance is the same to each menu, but since each

pie slice is in a different direction, the user only has to
move the mouse in the direction of the item. This sounds
good in theory and it bears out in practice: Users can select
items from pie menus faster than they can select items from
linear menus [3].

In theory users can also learn pie menus better and faster
than linear menus. It should be easier for users to
proceduralize and remember a simple physical direction
than an order in a uniform list.

While pie menus may have many advantages, they are not
particularly common in real world applications. A lack of
pie menu libraries in the most common user interface
toolkits does not help. I therefore decided to implement a
pie menu in Cocoa, Apple’s toolkit for Mac OS X, which I
will release as a Framework (a relocatable dynamic library
for Mac OS X). The goal is to eventually be able to replace
the contextual menus in mainstream applications such as
Safari or Mail. Third parties could also make use of the
Framework in their own applications.

Throughout this paper I will use the terms “user” and
“developer.” The user is the end user who actually uses the
pie menu in an application with their mouse. The developer
is the third party programmer who makes use of my library.

Figure 1. A four item pie menu

ARCHITECTURE OVERVIEW
The pie menu classes I created were built to reflect the
Cocoa menu API, NSMenu. For reasons discussed later, I
was not able to subclass NSMenuView and simply replace
that.

The architecture is broken up into two classes which are
intended for the developer, JMPieMenu and
JMPieMenuItem. The other two classes,
JMPieMenuView and JMPieMenuWindow, are used by
JMPieMenu to do the actual work of displaying the menu.

JMPieMenuItem keeps a lot of information about itself.
It knows its rotation from zero degrees, the slice angle
(angle of the circle it takes up), its title, and its drawing
path. The view asks each item for this information as it
draws.

WHAT WAS EASY
There were a couple of things which were easier than I
anticipated. I did not know Cocoa (or even Objective-C)
before I started, and once I wrapped my head around some
of its idiosyncrasies, it was rather easy to rapidly put
together code. It is impressive how little code is required to
do a lot of things.

Along those lines, the actual act of drawing a pie with
slices, even when those slices are each actually separate
drawing paths, turned out to be much easier than I expected.
I found out about Cocoa’s NSBezierPath, spent a little
bit of time learning how it works, and then it was not very
long before I was up and running with a basic circle. I spent
more time dividing the drawing up into several functions
and figuring out which functionality and information should
be kept in JMPieMenuItem than I did writing the initial
code which generated the proper paths.

One important aspect of the project from an integration
perspective was making sure that the menu looked and felt
like a native Mac OS X menu. This too turned out to be
easy. There are NSColor functions available which simply
supply the background color for controls and the highlight
color for menu items. It even provides the proper colors
when using Graphite instead of Aqua.

Once I had the general class architecture set up, it became
very easy for me to just work on the harder problems
without worrying about the interactions between classes.
There was a long stretch of time where I was only working
on one function in JMPieMenuItem, then another stretch
where I was just focused on a few functions in
JMPieMenuView. This architecture seemed to work
extremely well for the problems I encounted.

IMPLEMENTATION ISSUES
A large majority of my time on the initial implementation
of this project was spent on a small number of issues. There
were of course a lot of smaller issues, but they were and are

more easily solved, and fortunately even in sum they did
not seem to add up to very much.

Sizing the Pie
Because one of the major goals was the replacement of
contextual menus in Mac OS X, the pie menu had to be
text-based rather than icon-based. An icon-based layout
would have been simpler because all of the icons could be
the same size, allowing for consistent pie menu sizing and
easy layout. The RadialContext pie menu plug-in for
Firefox [8], for example, is icon-based. The text labels can
be outside the pie while the user learns the icons.

Speed of reading is reduced when text is rotated, drawn on
a circle, or skewed, so I decided to keep my text horizontal.
This too added to my problems. I wanted all of the item
titles to fit within their respective pie slices.

 In order to figure out the size of the overall pie,
JMPieMenuView iterates through each
JMPieMenuItem and sends a message asking for the
minimum desired radius. The JMPieMenuItem calculates
this value by making use of similar triangles. A small
triangle is generated with a side of the length of the inner
circle of the pie and three angles based on the angle of the
slice and its rotation from zero degrees. The other angles of
this triangle are known since we know the rotation, the fact
that the text is horizontal, and the slice angle. From this
small triangle we use a ratio of sides to get the ideal size of
a larger triangle which includes the full width of the item
title. It took me a while to come up with this solution, and
even longer to get the math right.

Once I finally figured out the sizing, I realized I had to
figure out the position of the text in the actual pie menu.
The difference is that the actual pie menu probably has a
radius larger than the minimum radius the pie menu item
requires (because the view went through and picked the
largest radius of all items). Before thinking about it too hard
I realized I could reuse the similar triangle code to
determine position as well.

NSMenuView’s Disappearance
In an ideal world my code would simply be a drop-in
replacement for NSMenu. Apple used to make use of an
NSMenuView for displaying NSMenu. I could have simply
subclasses NSMenuView and NSMenuItem and had easy
code to replace a context menu wherever a developer
pleased.

Unfortunately Apple no longer uses NSMenuView in
Cocoa [6]. It seems Apple optimized the NSMenu display
for its rectangular items. This meant that I had to make my
own classes with very similar protocols to NSMenu’s.

Optimizing Drawing
Currently I am using Cocoa’s NSBezierPath to draw the
pie menu and its slices. This has the advantage of being

 3

clear, easy, and generally the right way to go about this
kind of simple drawing.

Unfortunately, it is nowhere near as efficient as is needed
for really fast-displaying menus. Users have already
reported that sometimes if they move their mouse quickly
the drawing lags behind the cursor movement. I spent some
time looking through my code with a performance tool, and
more than 80% of the time drawing is in a single call to tell
Cocoa to draw the NSBezierPath. This is not
Cocoa’s fault; the paths are a complicated series
of points which are rotated and drawn many
times.

I optimized my loops everywhere that I
saw I could, and even cache all of the
paths and transforms, but for optimal
performance some other kind of
drawing will need to be done. Even
Apple did not seem happy with
standard high-level drawing for its
NSMenu [6]. Optimizing drawing
is made more difficult with the
fact that the pie menu slices
simply are not rectangles, so
images of them cannot be easily
cached unless they contain alpha
channels.

FUTURE STEPS
There are still many things my pie
menu implementation needs before it
is a good, solid, general-use pie menu
Framework for Mac OS X.

There are a series of quick little things that
need to be done before a public release.
JMPieMenuView currently does not draw arrows
for submenus. This should be relatively easy to fix. The
APIs for JMPieMenu and JMPieMenuItem should be
cleaned up and made to match their NSMenu counterparts
more closely. There are a lot of short convenience messages
which need to be implemented to match NSMenu’s API.

Currently my pie menu does not support click-and-drag
selection like a regular Mac OS X menu. This stems from
the fact that JMPieMenu creates a window on
mouseDown. All of the mouseDrag events between a
mouseDown and a mouseUp are sent to the originating
window; which happens to be the developer’s window
rather than my generated menu. I will need to figure out
how to get the mouseDrag events to my window so I can
make use of them.

I did not yet get to test replacing Safari or Mail’s contextual
menus with JMPieMenu. It seems that this should be
possible by creating a Cocoa Bundle which hijacks the
messages they pass and generates a JMPieMenu instead of

the NSMenu it is expecting. I do not expect this to be too
difficult, but it will take a little bit of work.

JMPieMenuWindow is a fullscreen window. This makes
it easier for me to grab the mouseMoved events outside
the window to track the cursor, and it makes it easier to
simply place the pie at a location in the view which matches

a location on the screen. The slowdown due to this
fullscreen window is not as much as expected. Still, ideally
this window would fit the size of the pie (which means the
window will have to be sized to the calculated size of the
pie).

Speaking of grabbing mouseMoved events outside the
window, since my pie menu does not support click-and-
drag selection I implemented a system in which the user can
simply move their cursor outside the pie to select an item;
no clicking is necessary. After a 200 millisecond delay, the
item the cursor has radially selected is automatically
activated. With click-and-drag selection, this design choice
should be reconsidered. It is nice for trackpads, where it is
difficult to click-and-drag select, but user error may be too
large of a problem. My hope is that the large pie area
around the cursor is enough of a “buffer” that automatic

Figure 2. The “advanced” look

selection outside of the pie is a feature advanced users can
make use of, rather than a problem that novice users have
difficulty with.

This pie menu draws an idealized marking line which
displays the path the user took to select submenus and
submenu items [7]. This marking line can appear somewhat
confusing and should probably be animated, rather than
displayed all at once.

There are also a few aesthetic issues which I believe should
be fixed in future versions of JMPieMenuView. The
largest is still text layout. Currently text layout is done in a
strictly bottom-up fashion; each JMPieMenuItem reports
what it thinks is best, and that is what is drawn. I think that
some top-down information could help lay out the text in a
nicer fashion, but figuring out the mechanics will be
difficult. JMPieMenuView would have to figure out the
locations that each item wants for text, the locations that are
possible, and select a subset of those locations as ideal, then
draw those.

The Mac OS X system look of the pie menu also may not
be what modern Mac OS X developers want. In fact, it is
more likely that developers of applications who want to use
my pie menu will want it to have an “advanced” or “Pro”
look (see Figure 2). I will offer this look as an optional
setting on JMPieMenuView.

Finally, JMPieMenu should be wrapped up as a
dynamically loaded Framework which can simply be linked
by the application which wishes to use it.

WHY PIE MENUS ARE NOT POPULAR
Don Hopkins, one of the early advocates of the pie menu
[3], explained in an interview with an online magazine why
he believes that pie menus are not more common [9].

In summary he believes that it is simply too difficult to
extend the existing user interface toolkits. He believes that
application developers do not develop new controls and
thus would never think to develop a pie menu. He also
argues that Apple and Microsoft are simply lazy and do not
like to implement things they did not invent [9].

In short I do not believe his arguments. It was not
exceedingly difficult for me to extend Cocoa, and I did not
know Cocoa before I began. In my experience application
developers write new controls all the time; successful
applications are based around a set of unique controls. I
cannot speak for how lazy Apple and Microsoft may be and
how much they suffer from “Not Invented Here
Syndrome,” but in Apple’s recent history they have created
things like Exposé and Dashboard [2, 1] and Microsoft has
created Command Tabs in Office 12 [5]. Both have been
quite willing to copy user interface innovations from one
another.

While I agree with Hopkins’ conclusion that it is easiest to
expose users to new user interface ideas through games, it

seems to me that Hopkins’ arguments do not get at the key
issues.

It is really hard to make pie menus look aesthetically
pleasing and maintain the usability and readability gains
that they were designed to bring. It is quite easy to simply
rotate text or bend text and have a pretty pie menu, but the
resulting menu is not as easy to read and may not be as fast
as a similar menu with horizontal text. It is also easy to do
away with the pie altogether, as has been suggested for
advanced marking menus [7], but I do not believe these
menus are anywhere near as immediately clear and obvious
to new users as pie menus are. One of the great features of
pie menus is that new users and advanced users alike can
appreciate advantages from their use.

Circular math is not easily translated into the rectangular
drawing and layout systems used by toolkits like Cocoa. It
is not that trigonometry in and of itself is difficult, but it is
quite difficult to optimize the layout and display of text
when it is necessary to keep a large number of floats
around to do the proper math. There are many bounding
issues to worry about in rectangular space, and a pie menu
implementation requires that you also worry about things in
circular space.

Pie menus are also limited in number of items. There are a
lot of extremely long menus in Mac OS X which cannot be
easily translated into small pie menus. Ideally a pie menu
should only have four or eight items. Six works somewhat
well. This is a major limitation for a developer hoping to
use them; the developer has to break down his menu
structures into submenus which work with those numbers.

Even with this limitation on number of items, any text-
based pie menu will become quite large and take up quite a
bit of screen space. I imagine it is difficult to convince a
developer that the screen space trade-off is worth the
advantages a pie menu offers.

For these reasons, the easy places to begin implementing
pie menus would not be the place I picked. Ideally a
developer could have an icon-based pie menu, like
RadialContext [8]. This makes the item titles much less
important and allows for focus on other aspects of the
implementation. Even sizing becomes easy.

CONCLUSION
While there are reasons to believe that my approach of
simply replacing contextual menus in existing applications
is not the right direction for a pie menu implementation, I
still feel this implementation is worthwhile for third party
developers. The work that needs to be done to finish up this
implementation is not a lot compared with the work done to
start it. This is thanks to a well-separated architecture which
allowed me to get through the harder problems more
quickly.

Most of the developer issues with pie menus are in the
implementation, not the use of a Framework. Developers

 5

will have to make smart decisions about which items
appear, the length of the item titles, and their positions, but
I have done all the trigonometry for them. Pie menus are a
lot of fun and I hope to find this implementation used in
third party Mac OS X applications in the future.

ACKNOWLEDGMENTS
I thank my friends (they know who they are) who tested
and commented on my various pie menu tests, even though
the initial versions made their laptops hot or their
PowerMac fans spin up.

REFERENCES
1. Apple – Mac OS X – Dashboard.

http://www.apple.com/macosx/features/dashboard/.
2. Apple – Mac OS X – Exposé.

http://www.apple.com/macosx/features/expose/.
3. Callahan, J., Hopkins, D., Weiser, M., and Shneiderman,

B. An empirical comparison of pie vs. linear menus. In
Proc. of the SIGCHI Conference on Human Factors in
Computing Systems (1988). J. J. O'Hare, Ed. CHI '88.
ACM Press, New York, NY, 95-100.

4. Cocoa. http://developer.apple.com/cocoa/.
5. The New Microsoft Office User Interface Overview.

http://www.microsoft.com/office/preview/uioverview.m
spx.

6. NSMenuView (Objective-C).
http://developer.apple.com/documentation/Cocoa/Refere
nce/ApplicationKit/ObjC_classic/Classes/NSMenuView
_index.html.

7. Tapia, M. A. and Kurtenbach, G. Some design
refinements and principles on the appearance and
behavior of marking menus. In Proc. of the 8th Annual
ACM Symposium on User interface and Software
Technology. UIST '95. ACM Press, New York, NY,
189-195

8. RadialContext.
http://www.radialthinking.de/radialcontext/.

9. Why pie menus aren’t ubiquitous?
http://www.infovis.net/printMag.php?num=125&lang=2
.

